Package: sharpData 1.4

sharpData: Data Sharpening

Functions and data sets inspired by data sharpening - data perturbation to achieve improved performance in nonparametric estimation, as described in Choi, E., Hall, P. and Rousson, V. (2000). Capabilities for enhanced local linear regression function and derivative estimation are included, as well as an asymptotically correct iterated data sharpening estimator for any degree of local polynomial regression estimation. A cross-validation-based bandwidth selector is included which, in concert with the iterated sharpener, will often provide superior performance, according to a median integrated squared error criterion. Sample data sets are provided to illustrate function usage.

Authors:W. John Braun <[email protected]>

sharpData_1.4.tar.gz
sharpData_1.4.zip(r-4.5)sharpData_1.4.zip(r-4.4)sharpData_1.4.zip(r-4.3)
sharpData_1.4.tgz(r-4.5-x86_64)sharpData_1.4.tgz(r-4.5-arm64)sharpData_1.4.tgz(r-4.4-x86_64)sharpData_1.4.tgz(r-4.4-arm64)sharpData_1.4.tgz(r-4.3-x86_64)sharpData_1.4.tgz(r-4.3-arm64)
sharpData_1.4.tar.gz(r-4.5-noble)sharpData_1.4.tar.gz(r-4.4-noble)
sharpData.pdf |sharpData.html
sharpData/json (API)

# Install 'sharpData' in R:
install.packages('sharpData', repos = c('https://wjbraun.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

fortran

1.00 score 234 downloads 5 exports 2 dependencies

Last updated 4 years agofrom:e0e336ee02. Checks:11 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 19 2025
R-4.5-win-x86_64OKFeb 19 2025
R-4.5-mac-x86_64OKFeb 19 2025
R-4.5-mac-aarch64OKFeb 19 2025
R-4.5-linux-x86_64OKFeb 19 2025
R-4.4-win-x86_64OKFeb 19 2025
R-4.4-mac-x86_64OKFeb 19 2025
R-4.4-mac-aarch64OKFeb 19 2025
R-4.3-win-x86_64OKFeb 19 2025
R-4.3-mac-x86_64OKFeb 19 2025
R-4.3-mac-aarch64OKFeb 19 2025

Exports:CVsharpLLsharpenMonolpolyMonoMatsharpiteration

Dependencies:KernSmoothquadprog